CARSO - LABORATOIRE SANTÉ ENVIRONNEMENT HYGIÈNE DE LYON

Laboratoire Agréé pour les analyses d'eaux par le Ministère de la Santé

Edité le : 29/09/2025

Rapport d'analyse Page 1 / 14

SAUR VALLEE DU RHONE

AGENCE GARD LOZERE 30000 NIMES

Les résultats et les conclusions éventuelles ne se rapportent qu'à l'échantillon soumis à l'analyse et tel qu'il a été prélevé. Le rapport comporte 14 pages.

La reproduction de ce rapport d'analyse n'est autorisée que sous la forme de fac-similé photographique intégral.

L'accréditation du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation, identifiés par le symbole #.

Les paramètres sous-traités sont identifiés par (*).

Les paramètres co-traités aux laboratoires BIOFAQ (Accréditation 1-1674 portée disponible sur www.cofrac.fr) sont identifiés par (**).

Identification dossier: LSE25-132489

Identification échantillon : LSE2509-35005-1 Analyse demandée par : ARS DD DU GARD

N° Analyse: 00187359 N° Prélèvement: 00185909

Nature: Eau à la production (turb>2)

Point de Surveillance : STATION DU RESERVOIR CODOLET Code PSV : 0000000233

Localisation exacte: SORTIE FILIERE DE TRAITEMENT

Dept et commune : 30 CODOLET

Coordonnées GPS du point (x,y) X: 44,1297263400 Y: 4,7004561000

UGE:2491 - AGGLOMERATION GARD RHODANIEN SAURType d'eau:T2 - ESU+ESO TURB>2 POUR TTP >1000 M3J

Type de visite : P2 Type Analyse : P2 Motif du prélèvement : CS

Nom de l'exploitant : SAUR AGENCE NIMES-GARRIGUES

ZI SAINT CEZAIRE

AVENUE DU DR PLEMING

30000 NIMES

Nom de l'installation : STATION DU RESERVOIR CODOLET Type : TTP Code : 000199

Prélèvement : Prélevé le 12/09/2025 à 09h32 Réception au laboratoire le 12/09/2025 à 14h04

Prélevé et mesuré sur le terrain par CARSO LSEHL / CHAPEL Claire - LSEHL

Prélèvement accrédité selon FD T 90-520 et NF EN ISO 19458 pour les eaux de consommation

humaine

Traitement: CHLORE

Les données concernant la réception, la conservation, le traitement analytique de l'échantillon et les incertitudes de mesure sont consultables au laboratoire. Pour déclarer, ou non, la conformité à la spécification, il n'a pas été tenu explicitement compte de l'incertitude associée au résultat.

Le laboratoire n'est pas responsable de la validité des informations transmises par le client qui sont antérieures à l'heure et la date de prélèvement. La référence de l'échantillon, sa nature, toute information liée à un traitement en amont du prélèvement ainsi que la date de prélèvement, si celui-ci a été réalisé par le client, sont des informations fournies par ce dernier

Date de début d'analyse le 12/09/2025 à 14h04

Paramètres analytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité	COFRAC
Mesures sur le terrain								

.../...

Rapport d'analyse Page 2 / 14

Edité le : 29/09/2025

Destinataire : SAUR VAL	LEE DU RHON	1E								
Paramètres analytic	ques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Référence qualit		
Température de l'eau	11P2*	22.8	°C	Méthode à la sonde	Méthode interne M_EZ008 v3	0			25	#
pH sur le terrain	11P2*	7.6	-	Electrochimie	NF EN ISO 10523	1.0		6.5	9	#
Chlore libre sur le terrain	11P2*	0.82	mg/l Cl2	Spectrophotométrie à la DPD	NF EN ISO 7393-2	0.03				#
Chlore total sur le terrain	11P2*	0.85	mg/l Cl2	Spectrophotométrie à la DPD	NF EN ISO 7393-2	0.03				#
Bioxyde de chlore	11P2*	N.M.	mg/l ClO2	Spectrophotométrie à la glycine	Méthode interne M_EZ013	0.06				
Analyses microbiologiques Microorganismes aérobies à 36°C 44h (PCA) (**)	11P2*	< 1	UFC/ml	Incorporation	NF EN ISO 6222					#
Microorganismes aérobies à 22°C 68h (PCA) (**)	11P2*	< 1	UFC/ml	Incorporation	NF EN ISO 6222					#
Bactéries coliformes à 36°C (**)	11P2*	< 1	UFC/100 ml	Filtration	NF EN ISO 9308-1 - version 2000				0	#
Escherichia coli (**)	11P2*	< 1	UFC/100 ml	Filtration	NF EN ISO 9308-1 - version 2000		0			#
Entérocoques intestinaux (Streptocoques fécaux) (**)	11P2*	<1	UFC/100 ml	Filtration	NF EN ISO 7899-2		0			#
Caractéristiques organoleptique	es									
Aspect de l'eau	11P2*	0	-	Analyse qualitative						
Odeur	11P2*	Chlore	-	Méthode qualitative						
Saveur	11P2*	Chlore	-	Méthode qualitative						
Couleur apparente (eau brute)	11P2*	< 5	mg/l Pt	Comparateurs	NF EN ISO 7887	5				#
Couleur vraie (eau filtrée)	11P2*	< 5	mg/I Pt	Comparateurs	NF EN ISO 7887	5			15	#
Couleur	11P2*	0	-	Qualitative						
Turbidité	11P2*	0.13	NFU	Néphélométrie	NF EN ISO 7027-1	0.10	1		0.5	#
Analyses physicochimiques Analyses physicochimiques de	base									
Conductivité électrique brute à 25°C	11P2*	766	μS/cm	Conductimétrie	NF EN 27888	50		200 1	100	#
TA (Titre alcalimétrique)	11P2*	0.00	° f	Potentiométrie	NF EN ISO 9963-1					#
TAC (Titre alcalimétrique	11P2*	28.20	° f	Potentiométrie	NF EN ISO 9963-1					#
complet) TH (Titre Hydrotimétrique)	11P2*	12.85	° f	Calcul à partir de Ca et Mg	Méthode interne M_EM144	0.06				#
Carbone organique total	11P2*	1.2	mg/I C	Oxydation par voie humide et IR	NF EN 1484	0.2			2	#
(COT) Fluorures	11P2*	0.25	mg/l F-	Chromatographie ionique	NF EN ISO 10304-1	0.05	1.5			#
Cyanures totaux (indice cyanure)	11P2*	< 10	μg/l CN-	Flux continu (CFA)	NF EN ISO 14403-2	10	50			#
Paramètres de la désinfection										
Bromates	11COHVD	< 3.0	μg/I BRO3-	Chromatographie ionique	NF EN ISO 15061	3.0	10			#
Equilibre calcocarbonique										
pH à l'équilibre	11P2*	7.44	-	Calcul	Méthode Legrand et Poirier					
Equilibre calcocarbonique (5 classes) Cations	11P2*	à l équilibre	-	Calcul	Méthode Legrand et Poirier			1	2	
Calcium dissous	11P2*	45.3	mg/l Ca++	ICP/AES après filtration	NF EN ISO 11885	0.1				#
Magnésium dissous	11P2*	3.7	mg/l Mg++	ICP/AES après filtration	NF EN ISO 11885	0.05				#
										Ш

Rapport d'analyse Page 3 / 14

Edité le : 29/09/2025

Destinataire : SAUR VA	LLEE DU RHON	<u> </u>							
Paramètres analyt	tiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité	
Sodium dissous	11P2*	95.8	mg/l Na+	ICP/AES après filtration	NF EN ISO 11885	0.2		200	#
Potassium dissous	11P2*	3.8	mg/l K+	ICP/AES après filtration	NF EN ISO 11885	0.1			#
Ammonium	11P2*	< 0.05	mg/l NH4+	Spectrophotométrie automatisée	Méthode interne M_J077	0.05		0.10	#
Anions					W_3077				
Chlorures	11P2*	22	mg/l CI-	Chromatographie ionique	NF EN ISO 10304-1	0.1		250	#
Sulfates	11P2*	50	mg/l SO4	Chromatographie ionique	NF EN ISO 10304-1	0.2		250	l
Nitrates	11P2*	19	mg/l NO3-	Flux continu (CFA)	NF EN ISO 13395	0.5	50		#
Nitrites	11P2*	< 0.01	mg/l NO2-	Flux continu (CFA)	NF EN ISO 13395	0.01	0.10		#
Somme NO3/50 + NO2/3	11P2*	0.38	mg/l	Calcul			1		
Carbonates	11P2*	0	mg/l CO3	Potentiométrie	NF EN ISO 9963-1	0			#
Bicarbonates	11P2*	344.0	mg/I HCO3-	Potentiométrie	NF EN ISO 9963-1	6.1			#
Métaux									
Aluminium total	11P2*	< 10	μg/I AI	ICP/MS après acidification et	NF EN ISO 17294-1 et	10		200	#
	11P2*		1	décantation ICP/MS après acidification et	NF EN ISO 17294-2 NF EN ISO 17294-1 et	2	10	200	#
Arsenic total		< 2	μg/l As	décantation	NF EN ISO 17294-2		10		"
Fer total	11P2*	< 10	μg/l Fe	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	10		200	#
Manganèse total	11P2*	< 10	μg/l Mn	ICP/MS après acidification et décantation	NF EN ISO 17294-1 et NF EN ISO 17294-2	10		50	#
Baryum total	11P2*	0.048	mg/l Ba	ICP/MS après acidification et	NF EN ISO 17294-1 et NF EN ISO 17294-2	0.010		0.70	#
Bore total	11P2*	0.202	mg/l B	décantation ICP/MS après acidification et	NF EN ISO 17294-1 et	0.010	1.5		#
Sélénium total	11P2*	< 2	μg/l Se	décantation ICP/MS après acidification et	NF EN ISO 17294-2 NF EN ISO 17294-1 et	2	20		#
Mercure total	11P2*	< 0.01	μg/I Hg	décantation Fluorescence après	NF EN ISO 17294-2 Méthode interne	0.01			#
incidure total	1112	C 0.01	μg/rrig	minéralisation bromure-bromate	M_EM156	0.01			
COV : composés organiques : BTEX	volatils								
Benzène	11P2*	< 0.2	μg/l	HS/GC/MS	NF EN ISO 11423-1	0.2	1.0		#
Solvants organohalogénés									
1,1,2,2-tétrachloroéthane	11COHVD	< 0.50	μg/l	HS/GC/MS	NF EN ISO 10301	0.50			
1,1,1-trichloroéthane	11COHVD	< 0.05	μg/l	HS/GC/MS	NF EN ISO 10301	0.05			#
1,1,2-trichloroéthane	11COHVD	< 0.20	μg/l	HS/GC/MS	NF EN ISO 10301	0.20			#
1,1-dichloroéthane	11COHVD	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10			#
1,1-dichloroéthylène	11COHVD	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10			#
1,2-dichloroéthane	11P2*	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10	3.0		#
Cis 1,2-dichloroéthylène	11COHVD	< 0.05	μg/l	HS/GC/MS	NF EN ISO 10301	0.05			#
Trans	11COHVD	< 0.20	μg/l	HS/GC/MS	NF EN ISO 10301	0.20			#
1,2-dichloroéthylène Bromoforme	11COHVD	2.8	μg/l	HS/GC/MS	NF EN ISO 10301	0.20			#
Chloroforme	11COHVD	2.5	μg/I	HS/GC/MS	NF EN ISO 10301	0.10			#
Chlorure de vinyle	11P2*	< 0.004	μg/l	Purge and Trap /GC/MS	Méthode interne	0.004	0.5		#
Dibromochlorométhane	11COHVD	7.3	μg/l	HS/GC/MS	M_ET105 NF EN ISO 10301	0.05			#
Dichlorobromométhane	11COHVD	4.4	μg/I	HS/GC/MS	NF EN ISO 10301	0.05			#
Dichlorométhane	11COHVD	< 5.0	µg/l	HS/GC/MS	NF EN ISO 10301	5.0			#
Somme des	11COHVD	17.00	μg/I	HS/GC/MS	NF EN ISO 10301	0.50	100		
trihalométhanes	4400111/15			LIE/OC/ME	NE EN 100 40004	0.40			#
Tétrachloroéthylène	11COHVD	< 0.10	µg/l	HS/GC/MS	NF EN ISO 10301	0.10			

Rapport d'analyse Page 4 / 14

Edité le : 29/09/2025

Destinataire : SAUR	VALLEE DU RHON	E						
Paramètres an	nalytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Tétrachlorure de carbone	11COHVD	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
Trichloroéthylène	11COHVD	< 0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10		#
Somme des tri et	11COHVD	<0.10	μg/l	HS/GC/MS	NF EN ISO 10301	0.10	10	
tétrachloroéthylène Epichlorhydrine	11ACEPI	< 0.05	μg/l	Purge and Trap /GC/MS	Méthode interne M_ET105	0.05	0.1	#
Pesticides Total pesticides								
Somme des pesticides identifiés hors métabolites non pertinents Pesticides azotés	11P2*	<0.005	µg/l	Calcul		0.005	0.5	
Cyromazine	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Amétryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Atrazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Atrazine 2-hydroxy	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Atrazine déséthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Cyanazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Desmetryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Hexazinone	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Metamitrone	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Metribuzine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Prometon	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Prometryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Propazine	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Sebuthylazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Secbumeton	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Simazine 2-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Terbumeton	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Terbumeton déséthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Terbuthylazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Terbuthylazine déséthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Terbuthylazine 2-hydroxy (Hydroxyterbuthylazine) (MT13)	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Terbutryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Triétazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Simetryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Dimethametryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Propazine 2-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Triétazine 2-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
			ļ		ļ ⁻			

Rapport d'analyse Page 5 / 14

Edité le : 29/09/2025

Paramètres anal	vtigues	Résultats	Unités	Máthadas	Norman	10	Limiter	Dátása
Parametres anai	ytiques	Resultats	Unites	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Triétazine déséthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Sébuthylazine déséthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Sebuthylazine 2-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Atrazine déséthyl 2-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Simazine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Atrazine déisopropyl	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Atrazine déisopropyl 2-hydroxy	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Terbuthylazine déséthyl 2-hydroxy (MT14)	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Cybutryne	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Aziprotryne	11P2*	< 0.030	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.030	0.1	
Isomethiozine	11P2*	< 0.030	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.030	0.1	
Mesotrione	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.050	0.1	#
Sulcotrione	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	0.1	#
Atrazine déséthyl déisopropyl (DEDIA)	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.020	0.1	#
Somme de la terbutylazine et de ses	11P2*	<0.020	μg/l	Calcul		0.020		
métabolites Atraton (atrazine métoxy)	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Pesticides organochlorés								
2,4'-DDD	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
2,4'-DDE	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
2,4'-DDT	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
4,4'-DDD	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
4,4'-DDE	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
4,4'-DDT	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Aldrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.005	0.03	#
Chlordane cis (alpha)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Chlordane trans (béta)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Dicofol 8.1 Modif LQ : 0.005µg/l	11P2*	< 0.100	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.100	0.1	
=> 0.100µg/l Dieldrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.005	0.03	#
Endosulfan alpha	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Endosulfan béta	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Endosulfan sulfate	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Endosulfan total	11P2*	<0.015	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.015	0.1	
(alpha+beta) Endrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
HCB (hexachlorobenzène)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.05	#

Rapport d'analyse Page 6 / 14

Edité le : 29/09/2025

HCH alpha	éférences de qualité #
HCH beta	#
HCH delta	
HCH delta	#
Heptachlore	#
Heptachlore époxyde	#
Isodrine	
Lindane (HCH gamma)	#
Somme des isomères de 11P2* < 0.005	#
Dméthoate	
Temefos	
Temefos	#
Dichlorvos 11P2*	
Dimethoate 11P2*	#
Ethoprophos	#
Fenthion	#
Malathion 11P2* < 0.005 μg/l HPLC/MS/MS après injection directe M_ET108 0.005 0.1	#
Phoxime $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#
Trichlorfon 11P2* < 0.005 $\mu g/l$ HPLC/MS/MS après injection directe M_ET108 0.005 0.1 Weight of the parameter of the para	#
Vamidothion 11P2* < 0.005 $\mu g/l$ $HPLC/MS/MS après injection directe M_{\perp}ET108 0.005 0.1 Methode interne M_{\perp}ET108 0.005 0.1 0.10 $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#
Paraoxon éthyl (paraoxon)	#
Dithianon 11P2* < 0.10 $\mu g/I$ HPLC/MS/MS après injection Méthode interne $M_{\perp}ET108$ Cadusafos 11P2* < 0.005 $\mu g/I$ GC/MS/MS après extraction SPE Méthode interne 0.005 0.1	#
directe M_ET108 Cadusafos 11P2* < 0.005 μg/l GC/MS/MS après extraction SPE Méthode interne 0.005 0.1	
	#
Chlorfenvinphos 11P2* < 0.005 μ g/I GC/MS/MS après extraction SPE Méthode interne 0.005 0.1	#
(chlorfenvinphos éthyl) M_ET172	
Chlorpyriphos éthyl 11P2* < 0.005 $\mu g/I$ GC/MS/MS après extraction SPE M Méthode interne M _ET172 0.005 0.1	#
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	#
Diazinon 11P2* < 0.005 $\mu g/l$ GC/MS/MS après extraction SPE M 6thode interne M _ET172 0.005 0.1	#
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	#
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	#
Parathion éthyl 11P2* < 0.01 μ g/l GC/MS/MS après extraction SPE Méthode interne 0.01 0.1 (parathion)	#
Parathion méthyl	#
Terbufos 11P2* < 0.005 μg/l GC/MS/MS après extraction SPE Méthode interne 0.005 0.1 μ_ΕT/72	#
Carbamates	
Carbaryl 11P2* < 0.005 μg/l HPLC/MS/MS après injection Méthode interne 0.005 0.1	#
Carbendazime	#
directe M_ET108	

Rapport d'analyse Page 7 / 14

Edité le : 29/09/2025

Paramètres analytiq	ues	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Carbétamide	11P2*	< 0.005	µg/l	HPLC/MS/MS après injection	Méthode interne M_ET108	0.005	0.1	#
Carbofuran	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	M_E1108 Méthode interne M_ET108	0.005	0.1	#
Carbofuran 3-hydroxy	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Mercaptodimethur (Methiocarbe)	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	M_ET108 Méthode interne M_ET108	0.005	0.1	#
Methomyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Pirimicarbe	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Benfuracarbe	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	
Formetanate	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	0.1	
Iprovalicarbe	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Fenoxycarbe	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne M ET108	0.005	0.1	#
Prosulfocarbe	11P2*	< 0.005	µg/l	directe HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Asulame	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.005	0.1	#
Molinate	11P2*	< 0.005	μg/l	directe GC/MS/MS après extraction SPE	M_ET108 Méthode interne	0.005	0.1	#
Benoxacor	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Dithiocarbamates					M_ET172			
Thiram	11P2*	< 0.100	μg/l	HPLC/MS/MS après injection	Méthode interne	0.100	0.1	
Ethylène urée (métabolite du manèbe, mancozèbe,	11P2*	< 0.10	μg/l	directe HPLC/MS/MS après injection directe	M_ET108 Méthode interne M_ET108	0.10		
métiram) Ethylène thiourée (métabolite du manèbe, mancozèbe, métiram) Néonicotinoides	11P2*	< 0.10	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.10		
Acetamipride	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Imidaclopride	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Thiaclopride	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Thiamethoxam	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Clothianidine	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne M ET108	0.005	0.1	#
Amides et chloroacétamides				directe	M_E1108			
Boscalid	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Metalaxyl (dont metalaxyl-M)	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	M_ET108 Méthode interne M_ET109	0.005	0.1	#
Isoxaben	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Flufenacet (flurthiamide)	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Isoxaflutole	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Fluxapyroxad	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Fenhexamide	11P2*	< 0.010	µg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.010	0.1	#
Acétochlore	11P2*	< 0.005	μg/l	directe GC/MS/MS après extraction SPE	M_ET108 Méthode interne	0.005	0.1	#
Alachlore	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.1	#
					_			

Rapport d'analyse Page 8 / 14

Edité le : 29/09/2025

Destinataire : SAUR V	ALLEE DU RHON	<u> </u>						
Paramètres ana	llytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Benalaxyl (dont benalaxyl-M)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Métazachlor	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Napropamide	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne MET172	0.005	0.1	#
Oxadixyl	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.005	0.1	#
Propyzamide	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Tebutam	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Alachlore-OXA	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	M_ET172 Méthode interne	0.020	0.10	#
Acetochlore-ESA (t-sulfonyl acid)	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	M_ET249 Méthode interne M_ET249	0.020		#
Acetochlore-OXA	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
(sulfinylacetic acid) Metolachlor- ESA (metolachlor ethylsulfonic	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
acid) Metolachlor- OXA (metolachlor oxalinic acid)	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
Metazachlor-ESA (metazachlor sulfonic acid)	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
Metazachlor-OXA (metazachlor oxalic acid)	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
Alachlore-ESA	11P2*	< 0.020	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.020		#
Flufenacet-ESA	11P2*	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	0.10	#
Flufenacet-OXA	11P2*	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	0.10	#
S-metolachlore-NOA 413173	11P2*	< 0.050	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.050		#
Dimethenamide (dont dimethenamide-P)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
2,6-dichlorobenzamide	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Propachlore	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Tolylfluanide	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	
Dimetachlore	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Dichlormide	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Ammoniums quaternaires					W_E1172			
Chlorméquat	11P2*	< 0.050	μg/l	HPLC/MS/MS injection directe	Méthode interne	0.050	0.1	#
Mépiquat	11P2*	< 0.050	μg/l	HPLC/MS/MS injection directe	M_ET055 Méthode interne	0.050	0.1	#
Diquat	11P2*	< 0.050	μg/l	HPLC/MS/MS injection directe	M_ET055 Méthode interne	0.050	0.1	#
Paraquat	11P2*	< 0.050	μg/l	HPLC/MS/MS injection directe	M_ET055 Méthode interne	0.050	0.1	#
Anilines					M_ET055			
Oryzalin	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection	Méthode interne	0.020	0.1	#
Métolachlor (dont	11P2*	< 0.005	μg/l	directe GC/MS/MS après extraction SPE	M_ET109 Méthode interne	0.005	0.1	#
S-metolachlor) Butraline	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Pendimethaline	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.1	#

Rapport d'analyse Page 9 / 14

Edité le : 29/09/2025

Paramètres an	VALLEE DU RHON	Résultats	Unités	Méthodes	Normes	LQ	Lingita	Dátása
Parametres and	aiyiiques	Resultats	Unites	Methodes	Normes	LQ	Limites de qualité	Références de qualité
Trifluraline	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Azoles								
Aminotriazole	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET130	0.050	0.1	#
Difenoconazole	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Diniconazole	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Prothioconazole	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	0.1	
Thiabendazole	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Bitertanol	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Bromuconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Cyproconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Epoxyconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Fenbuconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.1	#
Flusilazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_E1172 Méthode interne M_ET172	0.005	0.1	#
Flutriafol	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.1	#
Hexaconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Imazaméthabenz méthyl	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Metconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Myclobutanil	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Penconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Prochloraze	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Propiconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Tebuconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Tetraconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Fluquinconazole	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Triadimefon	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Benzonitriles					M_E11/2			
loxynil	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Bromoxynil	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Chloridazon-méthyl-desph	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005		#
ényl Chloridazon-desphényl	11P2*	< 0.020	μg/l	directe HPLC/MS/MS après injection	M_ET108 Méthode interne	0.020	0.1	#
Aclonifen	11P2*	< 0.005	μg/l	directe GC/MS/MS après extraction SPE	M_ET108 Méthode interne	0.005	0.1	#
Chloridazone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Dichlobenil	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Fenarimol	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.1	#
Bromoxynil-octanoate	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.01	0.1	#
Dicarboxymides					M_ET172			

Rapport d'analyse Page 10 / 14

Edité le : 29/09/2025

Paramètres ana	alytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de	Références de
	, ,			_			qualité	qualité
Dichlofluanide	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	
Iprodione	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	
Procymidone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Vinchlozoline	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.005	0.1	
Phénoxyacides					M_ET172			
2,4-D	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection	Méthode interne	0.020	0.1	#
2,4,5-T	11P2*	< 0.020	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.020	0.1	#
2,4-MCPA	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
MCPP (Mecoprop) total	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
(dont MCPP-P) Dicamba	11P2*	< 0.050	ug/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.050	0.1	#
			μg/l	directe	M_ET109			
Triclopyr	11P2*	< 0.020	μg/l "	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	"
2,4-DP (dichlorprop total) (dont dichlorprop-P)	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Diclofop méthyl	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	0.1	#
Fluroxypyr	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Fenoxaprop-ethyl	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Fluazifop-butyl (dont fluazifop-P-butyl)	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.020	0.1	#
fluroxypyr-meptyl ester	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection	Méthode interne	0.020	0.1	#
MCPP-1-octyl ester	11P2*	< 0.005	μg/l	directe GC/MS/MS après extraction SPE	M_ET108 Méthode interne	0.005	0.1	
Phénols					M_ET172			
DNOC (dinitrocrésol)	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection	Méthode interne	0.020	0.1	#
Dinoterb	11P2*	< 0.030	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.030	0.1	#
Pentachlorophénol	11P2*	< 0.030	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.030	0.1	#
Dinocap	11P2*	< 0.050	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.050	0.1	
Pyréthrinoïdes				directe	M_ET109			
Alphaméthrine (alpha	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.005	0.1	
cyperméthrine)	44 DO*	0.005		GC/MS/MS après extraction SPE	M_ET172 Méthode interne	0.005	0.4	#
Bifenthrine	11P2*	< 0.005	μg/l	·	M_ET172	0.005	0.1	"
Cyfluthrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	
Cyperméthrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Fenpropathrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Lambda cyhalothrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Permethrine	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Tefluthrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Deltaméthrine	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Strobilurines					_			
Pyraclostrobine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
			1	directe	M_ET109			

Rapport d'analyse Page 11 / 14

Edité le : 29/09/2025

Paramètres	Résultats	Unités	Méthodes	Normes LO		Limiton	Références de	
Farametres	s analytiques	Resultats	Offices	Metriodes	Normes	LQ	Limites de qualité	qualité
Azoxystrobine	11P2*	< 0.005	µg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Picoxystrobine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Trifloxystrobine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Fluoxastrobine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Kresoxim-méthyl	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Pesticides divers								
Cymoxanil	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	
Bentazone	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Fludioxonil	11P2*	< 0.005	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Glufosinate	11P2*	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	0.1	#
Quinmerac	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
AMPA	11P2*	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M ET116	0.020		#
Glyphosate (incluant le sulfosate)	11P2*	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	0.1	#
Fosetyl	11P2*	< 0.0185	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.0185	0.1	#
Fosetyl-aluminium (calcul)	11P2*	<0.020	µg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020	0.1	#
Chlorothalonil R 471811	11P2*	< 0.020	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.020		#
Acifluorfène	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1	#
Tebufenozide	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Flurtamone	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Spiroxamine	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Cycloxydime	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Triazoxide	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.050	0.1	#
Imazamethabenz	11P2*	< 0.005	µg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Pyroxsulam	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Clethodim	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
Cyprosulfamide	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1	#
Fenamidone	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Imazamox	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Thiencarbazone-méthyl	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET108	0.020	0.1	#
Thiophanate-méthyle	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.050	0.1	#
Triazamate	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005	0.1	#
Dodine	11P2*	< 0.10	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.10	0.1	
Picloram	11P2*	< 0.100	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.100	0.1	
Bromacile	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.005		#
Clopyralid	11P2*	< 0.050	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.050	0.1	
N,N-diméthylsulfamide (NDMS)	11P2*	< 0.100	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET108	0.100		

Rapport d'analyse Page 12 / 14

Edité le : 29/09/2025

Destinataire : SAU	JR VALLEE DU RHON							
Paramètres	analytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité
Anthraquinone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Bifenox	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Diphénylamine	11P2*	< 0.100	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET256	0.100	0.1	
Pyrimethanil	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Chlorothalonil	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne	0.01	0.1	
Clomazone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	M_ET172 Méthode interne M_ET172	0.005	0.1	#
Chlorothalonil SA (R417888)	11P2*	< 0.010	μg/l	HPLC/MS/MS après extr. SPE	Méthode interne M_ET249	0.010	0.110	#
Cloquintocet mexyl	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	
Cyprodinil	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Diflufenican (Diflufenicanil)	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne MET172	0.005	0.1	#
Dimethomorphe	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Ethofumesate	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Fenpropidine	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	
Fenpropimorphe	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Flurochloridone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Lenacile	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Métaldéhyde	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET277	0.020	0.1	#
Norflurazon	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Norflurazon désméthyl	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Oxadiazon	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Oxyfluorfene	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.01	0.1	#
Piperonil butoxyde	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Propargite	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Pyrifenox	11P2*	< 0.01	μg/l	GC/MS/MS après extraction SPE	Méthode interne M ET172	0.01	0.1	#
Quinoxyfène	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Carfentrazone ethyl	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	#
Famoxadone	11P2*	< 0.005	μg/l	GC/MS/MS après extraction SPE	Méthode interne M_ET172	0.005	0.1	
Urées substituées					W_E1172			
Chlortoluron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1	#
(chlorotoluron) Diuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Fenuron	11P2*	< 0.020	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.020	0.1	#
Isoproturon	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne M_ET109	0.005	0.1	#
Linuron	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	Méthode interne	0.005	0.1	#
Methabenzthiazuron	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Metobromuron	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection	M_ET109 Méthode interne	0.005	0.1	#
Metoxuron	11P2*	< 0.005	μg/l	directe HPLC/MS/MS après injection directe	M_ET109 Méthode interne M_ET109	0.005	0.1	#
					=			

Rapport d'analyse Page 13 / 14

Edité le : 29/09/2025

Destinataire : SAUR VALLEE DU RHONE										
Paramètres ana	llytiques	Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité		
Thifensulfuron méthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Sulfosulfuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Rimsulfuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Nicosulfuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Monolinuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Mesosulfuron methyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
lodosulfuron méthyl	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Flazasulfuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Ethidimuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
DCPU (1	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.005	0.1		#	
(3.4-dichlorophénylurée) DCPMU	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection	Méthode interne	0.005	0.1		#	
(1-(3,4-dichlorophényl)-3- méthylurée) (cas 3567-62-2)				directe	M_ET109					
Amidosulfuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Metsulfuron méthyl	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M ET109	0.020	0.1		#	
Tribenuron-méthyl	11P2*	< 0.020	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.020	0.1		#	
Thidiazuron	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
IPPMU (1-4(isopropylphényl)-3-m éthyl urée (cas 34123-57-4)	11P2*	< 0.005	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET109	0.005	0.1		#	
Dérivés du benzène Chlorobenzènes										
1,2-dichlorobenzène	11COHVD	< 0.05	μg/l	HS/GC/MS	NF EN ISO 11423-1	0.05			#	
1,3-dichlorobenzène	11COHVD	< 0.2	μg/l	HS/GC/MS	NF EN ISO 11423-1	0.2			#	
1,4-dichlorobenzène	11COHVD	< 0.05	µg/l	HS/GC/MS	NF EN ISO 11423-1	0.05			#	
Composés divers Divers										
Acrylamide	11ACEPI	< 0.1	μg/l	HPLC/MS/MS après injection directe	Méthode interne M_ET130	0.1	0.1		#	
Hydrazide maléique	11P2*	< 0.5	μg/l	HPIC/MS/MS après injection directe	Méthode interne M_ET116	0.5				
Radioactivité : l'activité est	comparée à la limite	de détection								
Activité alpha globale	11P2*	0.029	Bq/I	Compteur à gaz proportionnel	NF EN ISO 10704:2019	0.027		0.1	#	
activité alpha globale : incertitude (k=2)	11P2*	0.017	Bq/I	Compteur à gaz proportionnel	NF EN ISO 10704:2019	0.017			#	
Activité béta globale	11P2*	0.147	Bq/I	Compteur à gaz proportionnel	NF EN ISO 10704:2019	0.050		1	#	
Activité béta globale : incertitude (k=2)	11P2*	0.047	Bq/I	Compteur à gaz proportionnel	NF EN ISO 10704:2019	0.047			#	
Potassium 40	11P2*	0.119	Bq/I	Calcul à partir de K						
Potassium 40 :	11P2*	0.010	Bq/I	Calcul à partir de K						
incertitude (k=2) Activité béta globale	11P2*	0.041	Bq/I	Calcul				1		
résiduelle Activité béta globale résiduelle : incertitude	11P2*	0.013	Bq/I	Calcul						
(k=2)										

Rapport d'analyse Page 14 / 14

Edité le : 29/09/2025

Identification échantillon: LSE2509-35005-1
Destinataire: SAUR VALLEE DU RHONE

Paramètres analytiques		Résultats	Unités	Méthodes	Normes	LQ	Limites de qualité	Références de qualité	
Tritium	11P2*	< 10	Bq/I	Scintillation liquide	NF EN ISO 9698:2019	10		100	#
Tritium : incertitude (k=2)	11P2*	-	Bq/I	Scintillation liquide	NF EN ISO 9698:2019	-			#
Dose indicative	11P2*	< 0.10	mSv/an	Interprétation				0.1	

LQ = limite de quantification pour les paramètres physico-chimiques

11COHVDANALYSE (OHVD) ORGANOHALOGENES VOLATILS (ARS11-2020)11ACEPIANALYSE (ACEPI) ACRYLAMIDE EPICHLORHYDRINE (ARS11-2020)

11P2* ANALYSE (P2) P1P2 PRODUCTION (ARS11-2021)

MODIFICATION DE LA LQ

8.1 Réhausse de la limite de quantification

Méthode interne M_ET172 : Taux d'extraction/ionisation modifié par la présence d'interférents

Eau respectant les limites et références de qualité fixées par l'arrêté du 11 janvier 2007 et par les articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique pour les eaux de consommation humaine pour les paramètres analysés.

Si certains paramètres soumis à des seuils de conformité ne sont pas couverts par l'accréditation alors la déclaration de conformité n'est pas couverte par l'accréditation.

Les résultats sont rendus en prenant en compte les matières en suspension (MES) sauf quand la filtration est indiquée dans les normes analytiques.

Afin de maintenir l'accréditation, le laboratoire peut s'appuyer de manière exceptionnelle sur une étude de stabilité interne pour certains paramètres physico-chimiques.

(Déclaration de conformité non couverte par l'accréditation)

Isabelle VECCHIOLI Responsable de Laboratoire Vuls.